
©2024 HASHICORP1

Dynamic Identities
and Secrets for your
applications

©2024 HASHICORP

whoami

● ex-dev, ex-SRE
● Staff Solutions Architect @HashiCorp
● HashiCorp Ambassador 2021 and 2022
● Passionate about automation and infrastructure

https://atodorov.me/

©2024 HASHICORP

Orchestrate Any Application/workload

● in any format:
○ Docker, Podman containers
○ exec any existing binary/script/artifact
○ Virtual Machines with QEMU/KVM
○ Firecracker microVMs

● on any OS
○ Linux, Windows, macOS, FreeBSD

● on any* hardware
○ from Raspberry Pis to mainframes, RISC-V and x86 VMs and bare metal

Introduction to Nomad
A flexible and modern orchestrator

©2024 HASHICORP4

Nomad Main Features

Secure identity

Each application has a
unique and
cryptographically
verifiable identity which
can be used to
authenticate to third
parties and to Nomad
itself for secrets and API
access.

Advanced deployments

● Rolling
● Blue/Green
● Canary

Geo Distributed

A cluster can have its
nodes spread anywhere
(multiple DCs, cloud
regions, on
ships/trains/submarines
all around the world).

Multiple clusters can be
federated for a common
control plane while
keeping local
control/decision making.

Service Discovery

Register services in a
catalogue, and discover
them from any other
application.

Dynamic Templating

Configuration files/env
variables can be
provisioned for
applications using
metadata, secrets,
service discovery, etc.
Updates are handled.

Low overhead, low
maintenance

Single binary, updates are
just replace it + restart.

HashiStack

Integrates with Consul for
Service Discovery and
Mesh, Vault for secrets
management, Terraform
for complex deployments.

©2024 HASHICORP

Job

Self-contained HCL file.

Declaratively specifies the rules for running your
application.

Group

A set of tasks that should be co-located and
co-scheduled on the same client.

Task

The smallest atomic unit of work, the actual thing
to run.

Application Deployment as Code

job “my_job" {

 region = "eu"
 datacenters = ["gcp-europe-west9", "aws-eu-west-3", "pa3"]
 node_pool = "arm64"

 type = "service"

 group "web" {
 count = 5

 task "frontend" {
 driver = "docker"

 config {
 image = "hashicorp/web-frontend"
 }

 resources {
 cpu = 500 # MHz
 memory = 128 # MB

TERMINAL

©2024 HASHICORP6

● OIDC - OpenID Connect protocol, Identity Federation / Single Sign On
● JWT - JSON Web Tokens, signed JSON representing claims between two parties
● Workload Identity - the Identity of a workload, represented by a JWT
● Workload Identity Federation - setting up “trust” between different Identity Providers via OIDC

and JWT, to allow one workload’s identity to be trusted by others. Examples:
○ AWS IAM identity to be trusted by GCP to allow assuming a GCP Service Account
○ Microsoft Entra ID identity to be trusted by GitLab to allow users to authenticate
○ Nomad WI to be trusted by Vault, GCP, AWS, etc. to allow workloads to authenticate

Some Concepts

©2024 HASHICORP

Workload Identity in motion
The end to end flow

©2024 HASHICORP

 "aud": "nomadproject.io", # audience, who is this for, arbitrary value

 "iat": 1733164029, #issued at, in unix timestamp

 "iss": "https://nuc-nomad.lab", # issuer, as defined in the Nomad configuration, arbitrary value

 "jti": "bfa7649816ea-45b5165e-97a78c0940e4",

 "nbf": 1733164029, #not before, not to be used before this time

 "nomad_allocation_id": "19faa4d618c6-c69b-34e4-df0a6ce2a59c", # Nomad allocation ID

 "nomad_job_id": "traefik", # Nomad job ID/name

 "nomad_namespace": "default", # Nomad Namespace name

 "nomad_task": "traefik", # Nomad Task Name

 "sub": "global:default:traefik:traefik:traefik:default" # region+namespace+job+taskgroup+task+identity

Nomad JWT format

https://nuc-nomad.lab

©2024 HASHICORP9

GCP Workload Identity
Federation

©2024 HASHICORP

GCP Workload Identity Federation allows GCP IAM access to be given to trusted identities from other
Identity providers, such as:

● AWS, Azure
● Active Directory
● X.509 Certificates
● Any OIDC or SAML compliant provider (like Nomad, GitLab, GitHub)

Importantly for OIDC, it allows importing the public signing keys, and does not require GCP to have access
to the OIDC provider itself.

GCP WIF

©2024 HASHICORP

GCP WIF configuration flow:

1. WIF Pool
2. WIF Pool Provider - OIDC, mapping claims from the JWTs to GCP IAM attributes
3. IAM Service Account with roles giving them access to stuff
4. IAM Service Account binding to bind WIF identities to the Service Account
5. Profit

GCP WIF Configuration

©2024 HASHICORP12

Demo

©2024 HASHICORP

1. Terraform to configure the GCP WIF, Identity Provider, Service Account + a GCS bucket
2. A Nomad job using the gcloud CLI which authenticates with its Workload Identity to the GCP Service

Account
3. With its Service Account access, it pushes a dynamically generated file to a GCS bucket containing

a secret + some metadata

Demo contents

©2024 HASHICORP

Code: https://github.com/sofixa/nomad-dynamic-identities-and-secrets

Slide deck: https://atodorov.me/talks/nomad-workload-identity

Nomad Workload Identity Federation with GCP tutorial:
https://developer.hashicorp.com/nomad/tutorials/fed-workload-identity/integration-gcp

Nomad Workload Identity with AWS tutorial:
https://developer.hashicorp.com/nomad/docs/operations/aws-oidc-provider

https://developer.hashicorp.com/nomad

Links

https://github.com/sofixa/nomad-dynamic-identities-and-secrets
https://atodorov.me/talks/nomad-workload-identity
https://developer.hashicorp.com/nomad/tutorials/fed-workload-identity/integration-gcp
https://developer.hashicorp.com/nomad/docs/operations/aws-oidc-provider
https://developer.hashicorp.com/nomad

